Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Servicio Geológico Colombiano

Omitir vínculos de navegaciónv2ch8
Seleccione su búsqueda
miig

​​

 Volume 2 Chapter 8

Chapter  8

Detrital U–Pb Provenance, Mineralogy, and Geochemistry of the Cretaceous Colombian Back–Arc Basin   

Javier GUERRERO, Alejandra MEJÍA–MOLINA, and José OSORNO

https://doi.org/10.32685/pub.esp.36.2019.08


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8​


Citation is suggested as: 

Guerrero, J., Mejía–Molina, A. & Osorno, J. 2020. Detrital U–Pb provenance, mineralogy, and geochemistry of the Cretaceous Colombian back–arc basin. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 261–297. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.08


Download chapter  ​       Download supplementary information    

Download EndNote reference


Abstract 


The geology of the Cretaceous Colombian back–arc basin is reviewed considering detrital U–Pb provenance ages, mineralogy, and geochemistry of samples collected from outcrop sections and wells at several localities in the core of the Eastern Cordillera, Middle Magdalena Valley, and Catatumbo areas. The data set supports previous studies indicating a basin with main grabens in the present–day Eastern Cordillera between the Guaicáramo/Pajarito and Bituima/La Salina border faults, which operated as normal faults during the Cretaceous. Limestones are common on the western and northern sides of the basin, whereas terrigenous strata predominate on the eastern and southern sides. After the Berriasian, grabens were connected by marine flooding during the Valanginian, with two main source areas documented by distinct element and mineral contents, one in the Central Cordillera magmatic arc and the other in the Guiana Shield. Some elements present in Lower Cretaceous shales, including scandium, vanadium, and beryllium, are not related to the sediment supply areas for the basin but instead are linked to Valanginian to Cenomanian hydrothermal activity and dikes of gabbro, diorite, and tonalite emplaced during the main phase of extension in the basin.

 

Keywords: Cretaceous, back–arc, Colombia, U–Pb provenance, geochemistry.​


Resumen 


La geología de la Cuenca Cretácica Colombiana de back–arc se revisa considerando edades de procedencia U‒Pb, mineralogía y geoquímica de muestras colectadas en secciones de afloramientos y pozos de varias localidades en el núcleo de la cordillera Oriental, Valle Medio del Magdalena y Catatumbo. El conjunto de datos respalda estudios previos que indican una cuenca cuyos principales grábenes se encontraban en la cordillera Oriental actual, entre las fallas de Guaicáramo/Pajarito y Bituima/La Salina, que durante el Cretácico fueron fallas normales. Las calizas son comunes en los lados occidental y norte de la cuenca, mientras que los estratos terrígenos predominan en el lado este y sur de la misma. Después que los grábenes berriasianos de la cuenca se conectaron por inundación marina durante el Valanginiano, se pueden documentar dos áreas fuente con elementos y minerales distintivos, una en el arco magmático de la cordillera Central y otra en el Escudo de Guayana. Algunos elementos presentes en los shales del Cretácico Inferior, incluidos escandio, vanadio y berilio, no están relacionados con las áreas de aporte de los sedimentos de la cuenca, sino que están ligados con la actividad hidrotermal relacionada a los diques de gabro, diorita y tonalita, emplazados durante la extensión principal de la cuenca desde el Valanginiano hasta el Cenomaniano.

 

Palabras clave: Cretácico, back–arc, Colombia, procedencia U‒Pb, geoquímica.


Abbreviations 


ANH                                             Agencia Nacional de Hidrocarburos

CEOC                                       Western Emerald Belt

CEOR                                       Eastern Emerald Belt

ICP–MS                                 Inductively coupled plasma mass spectrometry

ICP–OES                             Inductively coupled plasma optical emission spectrometry

LA–ICP–MS                    ​Laser ablation inductively coupled plasma mass spectrometry

LOI                                                 Loss on ignition

MMV                                         Middle Magdalena Valley

MORB                                      Mid–ocean ridge basalt

OIB                                               Ocean island basalt

REE                                               Rare earth element

UMV                                            Upper Magdalena Valley

XRD                                             X–ray powder diffraction

ZFT                                               Zircon fission track​


References


Barham, M., Kirkland, C.L., Reynolds, S., O'Leary, M.J., Evans, N.J., Allen, H., Haines, P.W., Hocking, R.M., McDonald, B.J., Belousova, E. & Goodall, J. 2016. The answers are blowin' in the wind: Ultra–distal ashfall zircons, indicators of Cretaceous super–eruptions in eastern Gondwana. Geology, 44 (8): 643–646. https://doi.org/10.1130/G38000.1

 

Bonilla, G.E., Sarmiento, G.A. & Gaviria, S. 2011. Proveniencia y transformación diagenética de minerales arcillosos del Maastrichtiano–Paleoceno al norte de Bogotá, cordillera Oriental de Colombia. Geología Colombiana, 36(1): 179–196.

 

Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G. & Vervoort, J. 2010. U–Pb LA–ICP–MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzón Massif, Upper Magdalena Valley and Central Cordillera, southern Colombia. Boletín de Geología, 32(2): 93–109.

 

Cheilletz, A., Féraud, G., Giuliani, G. & Rodriguez, C.T. 1994. Time–pressure and temperature constraints on the formation of Colombian emeralds: An 40Ar/39Ar laser microprobe and fluid inclusion study. Economic Geology, 89(2): 361–380. https://doi.org/10.2113/gsecongeo.89.2.361

 

Cheilletz, A., Giuliani, G., Branquet, Y., Laumonier, B., Sanchez, A.J., Féraud, G. & Arhan, T. 1997. Datation K–Ar et 40Ar/39Ar à 65 + 3 Ma des gisements d'émeraude du district de Chivor–Macanal: Argument en faveur d'une déformation précoce dans la Cordillère Orientale de Colombie. Comptes–Rendus de l'Académie des Sciences, 324(5): 369–377. Paris, France.

 

Chew, D.M. & Donelick, R.A. 2012. Combined apatite fission track and U–Pb dating by LA–ICP–MS and its application in apatite provenance analysis. Mineralogical Association of Canada, Short Course 42: 219–247.

 

Clavijo, J., Mantilla, L., Pinto, J., Bernal, L. & Pérez, A. 2008. Evolución geológica de la serranía de San Lucas, norte del Valle Medio del Magdalena y noroeste de la cordillera Oriental. Boletín de Geología, 30(1): 45–62.

 

Cooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A.J. & Taborda, A. 1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10): 1421–1443.

 

Etayo–Serna, F., De Porta, N.S., De Porta, J. & Gaona, T. 2003. The Batá Formation of Colombia is truly Cretaceous, not Jurassic. Journal of South American Earth Sciences, 16(3): 113–117. https://doi.org/10.1016/S0895-9811(03)00048-8

 

Gómez, J., Montes, N.E., Alcárcel, F.A. & Ceballos, J.A. 2015. Catálogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. In: Gómez, J. & Almanza, M.F. (editors), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33, p. 63–419. Bogotá.

 

Guerrero, J. 2002a. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 1: Berriasian to Hauterivian. Geología Colombiana, (27): 3–25.

 

Guerrero, J. 2002b. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, (27): 27–49.

 

Guerrero, J. & Sarmiento, G. 1996. Estratigrafía física, palinológica, sedimentológica y secuencial del Cretácico Superior y Paleoceno del Piedemonte Llanero: Implicaciones en exploración petrolera. Geología Colombiana, 20: 3–66.

 

Guerrero, J., Sarmiento, G. & Navarrete, R. 2000. The stratigraphy of the W side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of selected areas and type localities including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, (25): 45–110.

 

Hettner, A. 1892. Die Kordillere von Bogotá. Gotha: Justus Perthes, 131 p.

 

Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes–Harker, A. & Stockli, D.F. 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U–Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10): 1423–1442. https://doi.org/10.1130/B30118.1

 

Horton, B.K., Anderson, V.J., Caballero, V., Saylor, J.E., Nie, J., Parra, M. & Mora, A. 2015. Application of detrital zircon U–Pb geochronology to surface and subsurface correlations of provenance, paleodrainage and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere, 11(6): 1790–1811. https://doi.org/10.1130/GES01251.1

 

Mantilla, L.C., Silva, A., Conde, J., Gaviria, J.A., Gallo, F.H., Torres, D.A., Ortegon, J.M., Silva, E.N., Tarazona, C.A., Castro, B.J. & Garcia, C.A. 2008. Estudio de los procesos de interacción fluido–roca en el cinturón esmeraldífero oriental (cordillera Oriental, Colombia) y su importancia en la exploración de nuevos yacimientos hidrotermales. Ingeominas–Universidad Industrial de Santander, unpublished report, 496 p. Bogotá.

 

Moore, T.E. 2014. U–Pb zircon age data for selected sedimentary, metasedimentary, and igneous rocks from northern and central Alaska. U.S. Geological Survey Data Series 899, 4 p. https://doi.org/10.3133/ds899

 

Moore, T.E., O'Sullivan, P.B., Potter, C.J. & Donelick, R.A. 2015. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism. Geosphere, 11(1): 93–122. https://doi.org/10.1130/GES01043.1

 

Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. & Stockli, D.F. 2010. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. American Association of Petroleum Geologists Bulletin, 94(10): 1543–1580. https://doi.org/10.1306/01051009111

 

Mora, A., Blanco, V., Naranjo, J., Sanchez, N., Ketcham, R.A., Rubiano, J., Stockli, D.F., Quintero, I., Nemčok, M., Horton, B.K. & Davila, H. 2013. On the lag time between internal strain and basement involved thrust induced exhumation: The case of the Colombian Eastern Cordillera. Journal of Structural Geology, 52: 96–118. https://doi.org/10.1016/j.jsg.2013.04.001

 

Moreno, J.M. 1990. Stratigraphy of the Lower Cretaceous Rosablanca and Cumbre Formations, Útica Sandstone and Murca Formation, west flank, Eastern Cordillera, Colombia. Geología Colombiana, 17: 65–86.

 

Moreno, J.M. 1991. Provenance of the Lower Cretaceous sedimentary sequences, central part, Eastern Cordillera, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 18(69): 159–173.

 

Ordóñez–Carmona, O., Restrepo, J.J. & Pimentel, M.M. 2006. Geochronological and isotopical review of pre–Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 372–382. https://doi.org/10.1016/j.jsames.2006.07.005

 

Pignatelli, I., Giuliani, G., Ohnenstetter, D., Agrosi, G., Mathieu, S., Morlot, C. & Branquet, Y. 2015. Colombian trapiche emeralds: Recent advances in understanding their formation. Gems & Gemology, 51(3): 222–259. http://dx.doi.org/10.5741/GEMS.51.3.222

 

Restrepo–Pace, P.A., Ruiz, J., Gehrels, G. & Cosca, M. 1997. Geochronology and Nd isotopic data of Grenville–age rocks in the Colombian Andes: New constraints for late Proterozoic – early Paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters, 150(3–4): 427–441. https://doi.org/10.1016/S0012-821X(97)00091-5

 

Sarmiento–Rojas, L.F., van Wess, J.D. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411. https://doi.org/10.1016/j.jsames.2006.07.003

 

Silva, A., Mantilla, L.C., Terraza, R. 2010. Clasificación química y geotermometría de las cloritas de las formaciones cretácicas Santa Rosa y Lutitas de Macanal, cinturón esmeraldífero oriental, cordillera Oriental, Colombia. Boletín de Geología, 32 (2): 45–54.

 

Smith, J.J., Turner, E., Möller, A., Joeckel, R.M. & Otto, R.E. 2018. First U–Pb zircon ages for late Miocene Ashfall Konservat–Lagerstätte and Grove Lake ashes from eastern Great Plains, USA. PLOS ONE 13(11): e0207103. https://doi.org/10.1371/journal.pone.0207103

 

Stacey, J.S. & Kramers, J.D. 1975. Approximation of terrestrial lead isotope evolution by a two–stage model. Earth and Planetary Science Letters, 26(2): 207–221. https://doi.org/10.1016/0012-821X(75)90088-6

 

Steiger, R.H. & Jäger, E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo– and cosmochronology. Earth and Planetary Science Letters, 36(3): 359–362. https://doi.org/10.1016/0012-821X(77)90060-7

 

Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibañez–Mejia, M. & Valencia, V. 2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 257–283. London. https://doi.org/10.1144/SP377.10

 

Vásquez, M., Altenberger, U., Romer, R.L. & Moreno, J.M. 2005. Extension–related magmatism during mid–Cretaceous times in the Eastern Cordillera, Colombia. 6th International Symposium on Andean Geodynamics, Extended Abstracts, p. 770–772. Barcelona, Spain.

 

Vásquez, M., Altenberger, U., Romer, R.L., Sudo, M. & Moreno–Murillo, J.M. 2010. Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South American Earth Sciences, 29(2): 171–186. https://doi.org/10.1016/j.jsames.2009.02.003

 

Vesga, C.J. & Barrero, D. 1978. Edades K/Ar en rocas ígneas y metamórficas de la cordillera Central de Colombia y su implicación geológica. II Congreso Colombiano de Geología. Abstracts, p. 19. Bogotá.

 

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003

 

Zapata, S., Cardona, A., Jaramillo, C., Valencia, V. & Vervoort, J. 2016. U–Pb LA–ICP–MS geochronology and geochemistry of Jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): Tectonic setting and regional correlations. Boletín de Geología, 38(2): 1–38. https://doi.org/10.18273/revbol.v38n2-2016001